Weighted Hardy-type inequalities involving fractional calculus operators
نویسندگان
چکیده
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملHardy-type inequalities in fractional h-discrete calculus
The first power weighted version of Hardy's inequality can be rewritten as [Formula: see text] where the constant [Formula: see text] is sharp. This inequality holds in the reversed direction when [Formula: see text]. In this paper we prove and discuss some discrete analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we prove that the corresponding constants are sh...
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملGeneralized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملon certain fractional calculus operators involving generalized mittag-leffler function
the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rad Hrvatske akademije znanosti i umjetnosti Matematičke znanosti
سال: 2018
ISSN: 1845-4100
DOI: 10.21857/ydkx2cr509